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ABSTRACT 

A digraph � = (�, �) is said to admit star–in–coloring if it satisfies the following two conditions: (i) no path of length 

three is bicolored (ii) if any path of length two with terminal vertices are of the same color, then the edges must be oriented 

towards the middle vertex. In this paper we prove that path union of theta graph �	 , open star of theta graph 
(�. �	), one 

point union for path union of theta graph 
��(�. �. �	), plus graph 
�� ,path union of plus graph 
�� , open star of plus graph 
(�. 
��), one point union for path union of plus graph 
��(�. �. 
��) are star–in–coloring graphs. 

KEYWORDS: Coloring; Star–in–Coloring; Star–in–Chromatic Number; Plus Graph; Theta Graph. 

INTRODUCTION 

A proper coloring of a graph G is a mapping �: � → {1,2,3, … } such that if � = ���� 	�, then		�(��) ≠ �(��). A star–

coloring of a graph G is a proper coloring of the graph with the condition that no path of length three (
#) is bicolored. For 

standard terminology and notation we follow Harary [3]. The concept of star–coloring of graphs was introduced by 

Grunbaum [1]. The star–coloring of graphs have been investigated by Fertin et al. [2] and Nesetril et al. [6]. A digraph G is 

said to be in–coloring if any path of length two with end vertices are of same color, then the edges are always directed 

towards the middle vertex. Sudha and Kanniga [7, 8] introduced a new concept known as star–in–coloring of graphs. A 

graph G is said to be star–in–coloring graph if the graph G admits both star – coloring and in – coloring.  

First we describe the star–in–coloring of a simple graph as shown in Figure 1. Let �$, �%, �&,�#	 be the vertices, 

and let the number within the circle indicates that particular color is assigned to that vertex.  

 

Figure 1: Star – in – Coloring of Cycle '( 
 

In this graph, we see that no two adjacent vertices have the same color, no path on four vertices is bicolored, 

further each and every edge in a path of length two in which end vertices have same color are oriented towards the central 

vertex. Hence it is star–in–colored with orientation. Further the star–in–chromatic number of the above graph is 3. 
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We [10] proved that cycle, regular cyclic, gear, fan, double fan, web and complete binary tree are star–in–

coloring. In [11], proved that splitting of fan graph, as well as double fan graph, Cartesian product of path and a fan, as 

well as path and a double fan, Tensor product of path and a fan,as well aspath and a double fan are also star–in–coloring 

graphs. For further results, the interested reader can refer to [4, 5, 9]. 

• Definition 1.1 [3] A theta graph is a block with two non-adjacent vertices of degree 3 and all other vertices of 

degree 2. We denote a theta graph by �	 . 
• Definition 1.2 [5] Take	
%, 
#, … , 
�)%, 
� , 
� , 
�)%	, … , 
#	, 
%	 paths on	2, 4, … , � − 2, �, �, � − 2,… ,4, 2 

vertices and arrange them centrally horizontal, where � ≡ 0	(./0	2), � ≠ 2. A graph obtained by vertical 

vertices of given successive paths is known as a plus graph of size � and it is denoted by 
�� . 
• Definition 1.3 [5] Let	� be graph and �$, �%, … , �� , � ≥ 2 be �	copies of graph �. Then the graph obtained by 

adding an edge from ��to ��2$, (1 ≤ 4 ≤ � − 1) is called path union of �. 
• Definition 1.4 [12] Let	� be a graph of �	vertices. The graph obtained by replacing each vertex of the 5$,�	 by a 

copy of � is called a star of	� denoted by 
(�. �). 
• Definition 1.5 The minimum number of colors required for the star–in–coloring of a graph � is called the star–

in–chromatic number of	� and is denoted by	67�(�). 
MAIN RESULTS 

Theorem 1 

The path union of theta graph in a path 
� admits star–in–coloring and its star–in–chromatic number is 5. 

Proof 

Let G be the graph obtained by joining n copies of theta graph by a path 
�, which consists of 8�	vertices and 10� − 1 

edges. We denote ��� be the ith  vertex in the jth copy of G,  where 1 ≤ 4 ≤ 8, 9�0				1 ≤ : ≤ �.	  

We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

For each : = 1,2, … , �, we have 

�;���< = =									1,							4�	4	 ≡ 1	(./0	2)42 + 1,							4�	4	 ≡ 0	(./0	2) ?
 

 

Figure 2: Star-in-Coloring of Path Union of Theta Graph. 
 

In this pattern of coloring, the graph G is star–in–colored and its star–in–chromatic number is 5. 
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Theorem 2 

An open star of  � copies of theta graph �	 admits star–in–coloring and its star–in–chromatic number is 67�@
(�. �	)A = 5. 
Proof 

Let G be a graph obtained by replacing each vertices of 5$,� except the central vertex of 5$,� by the theta graph �	 , i.e., 

� = 
(�. �	). This graph � consists of 8� + 1 vertices and 10� edges. 

Let �C be the central vertex of G. Let��� be the ith  vertex in the jth copy of �	, where 1 ≤ 4 ≤ 8, 1 ≤ : ≤ �.	Now 

we shall join each kth vertex of  all copies of  �	 to the apex vertex �C, where k is any fixed number between 1 and 8. 

We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

�(�C) = 2																														 
�;���< = = 			1,							4�	4	 ≡ 1	(./0	2)42 + 1,							4�	4	 ≡ 0	(./0	2), 4 > 0?

 

In this pattern of coloring, the graph G is star–in–colored and its star–in–chromatic number is 67�@
(�. �	)A = 5. 
The star–in–coloring of 
(�. �	) is shown in Fig. 3. 

 

Figure 3: Star-in-Coloring of E(F. GH). 
 

Theorem 3 

One point union for path union of theta graph 
��(�. �. �	) admits star–in–coloring and its star–in–chromatic number is 

67�@
��(�. �. �	)A = 5. 
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Proof 

Let � = 
��(�. �. �	) be a graph obtained by replacing each vertex of	
�� 	(1 ≤ 4 ≤ �) by the theta graph �	 , each vertex 

��,$$ (1 ≤ 4 ≤ �)is connected to the apex vertex �C, where t is any positive integer. This graph �	consists of 8�� + 1 vertices 

and (9� + 1)� + (� − 1)� edges.  

Let ��,�J  be the kth copy of the jth vertex in the ith  row, where 1 ≤ 4 ≤ �, 1 ≤ : ≤ 8, 1 ≤ K ≤ �.	 
We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

		�(�C) = 3																														 
�;��,�J < = = 			1,								4�	:	 ≡ 1	(./0	2):2 + 1,								4�	:	 ≡ 0	(./0	2), : > 0?

 

In this pattern of coloring, the graph G is star–in–colored and its star–in–chromatic number is 67�@
��(�. �. �	)A =5. 
The star–in–coloring of 
��(�. �. �	) is shown in Fig. 4. 

 

Figure 4: Star-in-Coloring of LFM (M. F. GH) 
 

Theorem 4 

A plus graph 
�� admits star–in–coloring and its star–in–chromatic number is67�@
��A = 5, where  � ≡ 0	(./0	2), � > 2. 
Proof 

Let � = 
��be a graph, which consists of �N
% + � vertices and �%edges. We denote ��,� is the jth  vertex in the ith  row, where 

1 ≤ 4 ≤ �% , 1 ≤ : ≤ 24 and  �% + 1 ≤ 4 ≤ �, 1 ≤ : ≤ 2� − 24 + 2.	 
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We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

If 	4	 ≡ 1	(./0	2) and 4 ≤ �% 

�;��,�< = O			1,								4�	:	 ≡ 1	(./0	2)2,								4�	:	 ≡ 2	(./0	4)5,								4�	:	 ≡ 0	(./0	4) ? 

If 	4 ≡ 0	(./0	2) and 4 ≤ �% 

�;��,�< = O			1,								4�	:	 ≡ 1	(./0	2)3,								4�	:	 ≡ 2	(./0	4)4,								4�	:	 ≡ 0	(./0	4) ? 

When 4 ≥ �% + 1 the pattern of coloring has been grouped into two cases: 

Case 1: When	� ≡ 0	(./0	4) 
Subcase 1.1: For 4 ≡ 1	(./0	2) 

�;��,�< = O			1,								4�	:	 ≡ 0	(./0	2)2,								4�	:	 ≡ 1	(./0	4)5,								4�	:	 ≡ 3	(./0	4) ? 

Subcase 1.2: For 4 ≡ 0	(./0	2) 
�;��,�< = O			1,								4�	:	 ≡ 0	(./0	2)4,								4�	:	 ≡ 1	(./0	4)3,								4�	:	 ≡ 3	(./0	4) ? 

Case 2: When	� ≡ 2	(./0	4) 
Subcase 2.1: For 4 ≡ 1	(./0	2) 

�;��,�< = O			1,								4�	:	 ≡ 0	(./0	2)5,								4�	:	 ≡ 1	(./0	4)2,								4�	:	 ≡ 3	(./0	4) ? 

Subcase 2.2: For 4 ≡ 0	(./0	2) 
�;��,�< = O			1,								4�	:	 ≡ 0	(./0	2)3,								4�	:	 ≡ 1	(./0	4)4,								4�	:	 ≡ 3	(./0	4) ? 

From the above cases, we conclude that the plus graph 
�� is star–in–colored and its star–in–chromatic number is 

5. 
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Figure 5: Star-in-Coloring of LPQ 
 

The star–in–coloring of 
�R is shown in Fig. 5. 

Theorem 5  

Path union of the plus graph 
�� admits star–in–coloring and its star–in–chromatic number is 5,where  � ≡ 0	(./0	4). 
Proof 

Let �	be a path union of 	S copies of the plus graph	
��, which consists of  T�N
% + �U S vertices and S�% + S − 1 edges. We 

denote	��,�J  is the jth  vertex in the ith  row of kth copy of 
��, where 1 ≤ 4 ≤ �% , 1 ≤ : ≤ 24 and  �% + 1 ≤ 4 ≤ �, 1 ≤ : ≤
2� − 24 + 2	and 1 ≤ K ≤ S.	Join the vertices �VN2$,�J 	to		�VN2$,$J2$  for K = 1,2, … , S − 1 by an edge. 

We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

If 	4	 ≡ 1	(./0	2) and 4 ≤ �% , ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 1	(./0	2)2,								4�	:	 ≡ 2	(./0	4)5,								4�	:	 ≡ 0	(./0	4) ? 

If 	4 ≡ 0	(./0	2) and 4 ≤ �% , ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 1	(./0	2)3,								4�	:	 ≡ 2	(./0	4)4,								4�	:	 ≡ 0	(./0	4) ? 

If 	4	 ≡ 1	(./0	2) and 4 ≥ �% + 1, ∀K 
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�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)2,								4�	:	 ≡ 1	(./0	4)5,								4�	:	 ≡ 3	(./0	4) ? 

If 	4	 ≡ 0	(./0	2) and 4 ≥ �% + 1, ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)4,								4�	:	 ≡ 1	(./0	4)3,								4�	:	 ≡ 3	(./0	4) ? 

In this pattern of coloring, the plus graph � is star–in–colored and its star–in–chromatic number is 5. 
The star–in–coloring of path union of S copies of 
�# is shown in Fig. 6. 

 

Figure 6: Star-in-Coloring of Path Union of X Copies of LP( 
 

Theorem 6 

An open star of � copies of plus graph 
(�. 
��) admits star–in–coloring and its star–in–chromatic number is 

67�@
(�. 
��)A = 5, where  � ≡ 0	(./0	2), � > 2. 
Proof 

Let � = 
(�. 
��) be a graph obtained by replacing each vertices of 5$,� except the apex vertex of 5$,�by the graph 


�� .	This graph � consists of � T�N
% + �U + 1 vertices and �(�% + 1) edges. 

Let �C be the apex vertex of 5$,� . We denote ��,�J  is the jth  vertex in the ith  row of kth copy of 
�� in�,  where 

1 ≤ 4 ≤ �% , 1 ≤ : ≤ 24 and  �% + 1 ≤ 4 ≤ �, 1 ≤ : ≤ 2� − 24 + 2	and  1 ≤ K ≤ �.Join the vertices �VN2$,$J with the vertex �C 

by an edge,K = 1,2, … , �. 
We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

If 	4	 ≡ 1	(./0	2) and 4 ≤ �% , ∀K 
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�;��,�J < = O			1,								4�	:	 ≡ 1	(./0	2)2,								4�	:	 ≡ 2	(./0	4)5,								4�	:	 ≡ 0	(./0	4) ? 

If 	4 ≡ 0	(./0	2) and 4 ≤ �% , ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 1	(./0	2)3,								4�	:	 ≡ 2	(./0	4)4,								4�	:	 ≡ 0	(./0	4) ? 

When 4 ≥ �% + 1 the pattern of coloring has been grouped into two cases: 

Case 1: When � ≡ 0	(./0	4) 
Subcase 1.1: For 4 ≡ 1	(./0	2), ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)2,								4�	:	 ≡ 1	(./0	4)5,								4�	:	 ≡ 3	(./0	4) ? 

Subcase 1.2: For 4 ≡ 0	(./0	2), ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)4,								4�	:	 ≡ 1	(./0	4)3,								4�	:	 ≡ 3	(./0	4) ? 

Case 2: When � ≡ 2	(./0	4) 
Subcase 2.1: For 4 ≡ 1	(./0	2), ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)5,								4�	:	 ≡ 1	(./0	4)2,								4�	:	 ≡ 3	(./0	4) ? 

Subcase 2.2: For 4 ≡ 0	(./0	2), ∀K 

�;��,�J < = O			1,								4�	:	 ≡ 0	(./0	2)3,								4�	:	 ≡ 1	(./0	4)4,								4�	:	 ≡ 3	(./0	4) ? 

and �(�C) = 3 

From the above cases, we conclude that thegraph � is star–in–colored and its star–in–chromatic number is 5. 
The star–in–coloring of 
(�. 
�#) is shown in Fig. 7. 
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Figure 7: Star-in-Coloring of E(M. LP() 
 

Theorem 7 

One point union for path union of plus graph 
��(�. �. 
��) admits star–in–coloring and its star–in–chromatic number is 

67�@
��(�. �. 
��)A = 5, where . ≡ 0	(./0	4). 
Proof 

Let � = 
��(�. �. 
��) be a graph obtained by replacing each vertices of  5$,� except the apex vertex of 5$,� by the path 

union of n copies of the graph 
�� . This graph � consists of �� T�N
% +.U + 1 vertices and ��(.% + 1) edges. 

Let �C be the apex vertex of 5$,� with t branches. We denote ��,�7,J is the jth  vertex in the ith  row of kth copy of 
�� 

lies in the sth branch of the graph �,  where 1 ≤ 4 ≤ �% , 1 ≤ : ≤ 24 and  �% + 1 ≤ 4 ≤ ., 1 ≤ : ≤ 2. − 24 + 2	and  

1 ≤ K ≤ �, 1 ≤ Y ≤ �.  Join the vertices �ZN2$,�7,J to�ZN2$,$7,J2$  for K = 1,2, … , � − 1, Y = 1,2, … , �by an edge.Also join the 

vertices of �ZN2$,$7,$ with		�C by an edge. 

We define a function �: � → {	1, 2, 3, … } such that �(��) ≠ �(��)  if  ���� 	�, as follows: 

If 	4	 ≡ 1	(./0	2) and 4 ≤ �% , ∀	Y, K 

�;��,�7,J< = O			1,								4�	:	 ≡ 1	(./0	2)2,								4�	:	 ≡ 2	(./0	4)5,								4�	:	 ≡ 0	(./0	4) ? 

If 	4 ≡ 0	(./0	2) and 4 ≤ �% , ∀	Y, K 
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�;��,�7,J< = O			1,								4�	:	 ≡ 1	(./0	2)3,								4�	:	 ≡ 2	(./0	4)4,								4�	:	 ≡ 0	(./0	4) ? 

If 	4	 ≡ 1	(./0	2) and 4 ≥ �% + 1, ∀	Y, K 

�;��,�7,J< = O			1,								4�	:	 ≡ 0	(./0	2)2,								4�	:	 ≡ 1	(./0	4)5,								4�	:	 ≡ 3	(./0	4) ? 

If 	4	 ≡ 0	(./0	2) and 4 ≥ �% + 1, ∀	Y, K 

�;��,�7,J< = O			1,								4�	:	 ≡ 0	(./0	2)4,								4�	:	 ≡ 1	(./0	4)3,								4�	:	 ≡ 3	(./0	4) ? 

and �(�C) = 3																																																	 
In this pattern of coloring, the graph �is star–in–colored and its star–in–chromatic number is 5. 
The star–in–coloring of  
��(�. �. 
�#) is shown in Fig. 8. 

 

Figure 8: Star-in-Coloring of LFM (M. F. LP() 
 

CONCLUSION 

In this paper we investigate the star–in–coloring concept to the graphs related to theta and plus graphs. Further we find the 

star–in–chromatic number of these graphs. It is interesting to note that each and every graph discussed in this paper has a 

star–in–chromatic number five. To find a new class of graphs with star–in–chromatic number five, is an interesting open 

area of research. 
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